
piStar Tool – A Pluggable Online Tool for Goal
Modeling

João Pimentel
Universidade Federal Rural de Pernambuco

Pernambuco, Brazil
Email: joao.hcpimentel@ufrpe.br

Jaelson Castro
Universidade Federal de Pernambuco

Pernambuco, Brazil
Email: jbc@cin.ufpe.br

Abstract—Since its proposal in the nineties, the i* goal
modeling proposal has spawned a number of complementary
work, including: language extensions, automated reasoning, and
transformation to/from i* models. In order to automate their
proposals, researchers need to either create a new tool from
scratch or to extend an existing tool. In fact, the i* Wiki lists 29
different i* modeling tools. A common approach for creating such
tools has been to use the Eclipse tools as a foundation (12 listed
tools), which presents complexity issues of its own. The main idea
of this work is the creation of an i* modeling tool with low entry
barriers for developers wishing to extend it. Our piStar tool can
be extended with JavaScript, requiring no specific development
tools. Alternatively, developers can adopt their language of choice
(such as Java and Python), using piStar models as input either
through manually downloading the model file or by sending it
for processing through a REST request.

I. INTRODUCTION

The i* modeling language has been widely adopted by the
requirements engineering academic community [1]. In 2016 it
was updated to i* 2.0, through a collaborative effort [2].

The piStar tool here presented is a modeling tool compliant
with the i* 2.0 standard. It prevents some common mistakes
that would result on invalid models by not allowing its users to
create invalid links, such as dependency links from an actor to
itself or contribution links to tasks. Besides being usable as a
tool itself, piStar has been designed as a platform to facilitate
development of i*-based tools.

Many proposals build upon the i* language [3]. On one
hand, some of them aim to extend the language itself –
e.g, context annotations, behavioral expressions, cross-cutting
concerns, cardinality annotations, modularization mechanisms,
etc. On the other hand, some proposals do not modify the
language, but use its models as input — e.g., for analysis, for
automated reasoning, and for executing model transformations,
where .

This paper presents the piStar tool and describes how it
can be extended, for the benefit of researchers whom need to
provide tool support for their i*-based proposals.

II. THE PISTAR TOOL

Figure 1 shows an overview of the piStar tool1 user inter-
face. Figure 1-A shows the modeling palette, inspired by the
design of the OME tool2. The elements and links of the palette

1Live version: http://www.cin.ufpe.br/∼jhcp/pistar/
2OME tool: http://www.cs.toronto.edu/km/ome/

Fig. 1. A screenshot of the piStar tool

can be added to the drawing area (Figure 1-B). The visual
design of the diagram is based on the original i* notation
[1], with one conscious deviation: a rounded rectangle is used
in place of a circular shape for the representation of actors’
boundaries3.

Similarly to the OME tool, actors can be collapsed and ex-
tended at will. Thus, one can create different views (Strategic
Dependencies and Strategic Relationships) of the same model.

Figure 1-C shows the properties of the selected element
(in this case, the “Authorization obtained” goal). Users can
freely add custom attributes to their models (similarly to
jUCMNav [4]), by means of the “Add Property” button.
In this example, a “Rationale” property has been added to
the selected element. This functionality allows researchers to
easily create models to experiment with their i* extensions –
e.g., context annotations, behavior expressions, and cardinality.
Nevertheless, some implementation would still be required if
one needs to display such information visually.

3The choice of a rectangular shape intends to reduce wasted space,
considering that the diagrams are usually displayed in rectangular media (e.g.,
computer screens and print paper).



Last but not least, Figure 1-D displays the main menu of
the tool. Models can be exported as SVG or PNG images.
They can be saved and loaded as JavaScript Object Notation
(JSON) files. These files can be processed with the help of
JSON libraries, which are available for all major programming
languages. For instance, the following Java method using the
Jackson 2 library prints out the name of every actor in a
specific model.

private static void printActorsNames() {
ObjectMapper mapper = new ObjectMapper();
try {
HashMap<String, Object> map = mapper.readValue(new

File("c:\\goalModel.txt"), new TypeReference<
Map<String, Object>>(){});

for (HashMap actor : (ArrayList<HashMap>) map.get(
"actors")) {

System.out.println(actor.get("text")); } }
catch (Exception e) { e.printStackTrace(); } }

III. EXTENDING THE TOOL

The source code and documentation of the tool are publicly
available on an open source repository4. In order to reduce the
entry barriers for new developers, the project was architected
as to allow extending the tool without the need for compilation,
build processes, specific tools, or web servers. The only
required tools are a text editor and an up-to-date web browser.

Developers can add new elements to the user interface by
manipulating the HTML DOM (HyperText Markup Language
Document Object Model). For instance, in order to add a new
button, this JavaScript code excerpt5 is sufficient:

$(’#appToolbar’).append(’<button type="button" id="
exampleButton"> Calculate Metric </button>’);

A. Client-side processing

To facilitate the development of plugins that run on client-
side (i.e., on the user’s web browser), piStar provides a i*
2.0 modeling API (Application Programming Interface). This
API includes methods for editing the current model, such as
addActor, addGoal, clearModel, and element.remove.

The tool’s API also includes functions for querying the
model, such as getElements and getLinks (for retrieving lists
of the elements and the links of the model, respectively),
element.isGoal (for checking whether a specific element is
a Goal) and element.isKindOfActor (for checking if a given
element is an Actor or an Agent or a Role), and ele-
ment.prop(‘customProperties’) (for accessing the custom at-
tributes of a specific element).

As an example, the following JavaScript code excerpt cal-
culates and displays the number of goals of the current model:

elements = istar.getElements();
goals = _.filter(elements, function(element) {
return element.isGoal(); });

alert(‘Number of goals: ’ + goals.length);

4Source code and documentation: https://github.com/jhcp/pistar
5The code presented in this section uses the jQuery and lodash libraries;

the same functionality can be developed with plain JavaScript as well.

B. Server-side processing

Alternatively, models can be processed remotely by means
of web services. This possibility allows developers to use their
programming language of choice (e.g., Java, Python, Haskell),
also enabling them to make use of legacy code.

The following code sends the current model to a web service
through a POST request. In the event of success, the response
from the web service is displayed to the user.
$.ajax({
type: "POST", url: "www.example.com/service",
contentType: "application/json", data: saveModel(),
success: function(response) { alert(response); }});

Once the model is received by the web server, it can be
processed by making use of JSON libraries as exemplified in
Section II.

IV. RELATED WORK AND CONCLUSION

The GATO tool [5] can be considered a predecessor of
piStar – the former is also an online goal modeling tool,
but it does not support the social concepts of i* (such as
actors and their dependencies). The Leaf 2.0 tool6 is similar
to piStar in the sense that it is a web-based i* 2.0 modeling
tool. It constitutes the basis of three more specific tools:
CreativeLeaf[6] and GrowingLeaf/BloomingLeaf [7]. Unlike
piStar, it does not support the creation of dependency links.

The piStar tool is a platform for the development of i*-
based tools. It enables the creation of i* 2.0 models that can
be extended with custom properties. Moreover, it provides
an i* 2.0 modeling and querying API that can be used
to create additional functionalities in a plugin-like structure.
Some piStar extensions already developed include an online
model sharing service7 and a dependability analysis plugin8.

Future work will concentrate on fleshing out the modeling
capabilities of the tool while improving its user interface based
on usability evaluations.

ACKNOWLEDGMENT

Work partially supported by CNPq and FACEPE.

REFERENCES

[1] E. Yu, P. Giorgini, N. Maiden, and J. Mylopoulos, Social modeling for
requirements engineering. Mit Press, 2011.

[2] F. Dalpiaz, X. Franch, and J. Horkoff, “iStar 2.0 Language Guide,” arXiv
preprint, no. arXiv:1605.07767 [cs.SE], pp. 1–15, 2016.

[3] E. Gonçalves, J. Castro, J. Araújo, and T. Heineck, “A systematic
literature review of istar extensions,” Journal of Systems and Software,
vol. 137, pp. 1–33, 2018.

[4] D. Amyot, G. Mussbacher, S. Ghanavati, and J. Kealey, “GRL Modeling
and Analysis with UCMNav,” Proceedings of the 5th International i*
Workshop, pp. 160–162, 2011.

[5] J. Pimentel, J. Vilela, and J. Castro, “Web tool for Goal modelling
and statechart derivation,” 2015 IEEE 23rd International Requirements
Engineering Conference, RE 2015 - Proceedings, pp. 292–293, 2015.

[6] J. Horkoff and N. Maiden, “Creative leaf: A creative iSTAR modeling
tool,” CEUR Workshop Proceedings, vol. 1674, pp. 25–30, 2016.

[7] A. M. Grubb, G. Song, and M. Chechik, “GrowingLeaf: Supporting
requirements evolution over time,” CEUR Workshop Proceedings, vol.
1674, pp. 31–36, 2016.

6Leaf 2.0 tool: https://github.com/amgrubb/Leaf2.0
7https://github.com/maxguenes/piStar
8https://github.com/leandrobergmann/pistargodaintegration


